
Steven Lawrance Lock-by-Wire Door Lock Detailed Design, v1.0

Lock-by-Wire Door Lock
Detailed Design

Steven Lawrance
Version 1.0

November 26, 2006

Page 1 of 17

Steven Lawrance Lock-by-Wire Door Lock Detailed Design, v1.0

Document Revisions

Revision Changes

0.9 Initial draft

1.0 Final version

Page 2 of 17

Steven Lawrance Lock-by-Wire Door Lock Detailed Design, v1.0

Table of Contents

Introduction..4
Architecture..5

Context..5
Abstract States...5
Visibility..6
Prioritization..6
Cyclic Executive...6

High-Level Design...7
Saving Input States..7
Determining Desired States...8
Setting the Output States to the Desired States...10
State Compositions..10

Decision Points..12
Platform Technologies...13

Processor...13
Language...14
Input Resistor-Capacitor (RC) Circuits...14

Schedulability Analysis...15
References..17

Page 3 of 17

Steven Lawrance Lock-by-Wire Door Lock Detailed Design, v1.0

Introduction
This document describes the detailed design for the lock-by-wire door lock system using a
process of gradual refinement with traceability. The requirements and use cases are captured into
an appropriate architecture. The architecture is then refined into an object-oriented detailed
design. An overview of the software’s requirements appears below.

The software will take inputs from multiple sources to drive the desired states of output devices.
The desired states will drive physical mechanisms, and sensors from those physical mechanisms
will feed input back into the software as the actual states. The system’s current status can be
displayed on a notification output along with any alerts that the user should know about. When
necessary, the software can activate backup unlocking mechanisms to force the door to unlock in
the event of a primary locking mechanism’s failure to unlock.

The system generally classifies users into three different categories: trusted users, untrusted
users, and installers. Trusted users are typically either authenticated and authorized or simply on
the trusted side of the door, such as the inside of a house’s front door. Untrusted users are those
who are not authorized to affect the door’s state when the door is locked. This models the outside
of a residential door or the inside of a prison cell door.

The following table summarizes the system’s timing requirements in terms of requirements and
timeouts, sorted by increasing order of deadline.

Requirement Deadline

The system shall recognize and prioritize input signals within 10ms 10 milliseconds

The backup unlocking mechanism shall begin to be activated within 50ms of
determining that the backup unlocking mechanism should be activated

50 milliseconds

When the fire alarm input signal indicates that the building is on fire, then the
door shall begin to disengage its primary locking mechanisms within 50ms

50 milliseconds

The primary locking mechanism shall change its state from locked to
unlocked or vice-versa within 3 seconds by default unless if its configuration
states different maximum timeout values

3 seconds

When the manual intervention signal is set, it will remain set for five seconds
since the time that the signal becomes unset

5 seconds

When a trusted user is trying to open the door and the system determines that
the primary locking mechanisms failed, then the system will wait for 15
seconds before it engages the backup unlocking mechanisms

15 seconds

Software updates can occur in five minutes or less 5 minutes

For more information on the background of this project, its requirements, and its quality
attributes, please refer to the requirements and specification document for the lock-by-wire door
lock system.

Page 4 of 17

Steven Lawrance Lock-by-Wire Door Lock Detailed Design, v1.0

Architecture

Context

Collectively, the requirements of this system call for a real-time control system that drives output
devices based on inputs, a configuration, and output feedback. Some important decisions are
based on time-based information, such as how long a door knob is held down. Other decisions
are formed by an analysis of the separate input states and the configuration, which are discussed
in requirements R4 and R10. Generally, the system is trying to get the output states to match
their appropriate desired states for a given set of inputs, which is documented in requirements R1
and R2. When that cannot
be performed after a
timeout, the desired output
states might change to
other values for either
alerting or forced
unlocking, which is
covered in requirement R8.
Manual intervention,
which is specified in
requirement R6, is
considered an input device.
This general relationship is
depicted in Figure 1,
which shows the high-
level context diagram.

Abstract States

The system maintains several abstract
states, each which are modeled
separately. Figure 2 shows the locked
and unlocked states. The system starts
with its current state. When a locked
door needs to be unlocked, it tells the
proper output device to unlock and waits
until it either unlocks or a timeout
occurs. Depending on other states, the
backup unlock mechanism might engage
if the primary locking mechanism fails
to unlock. Note that the locking
operation does not have an emergency
locking mechanism in this system.

Another state tracked by the system is
the door’s open versus closed state. This
is depicted in Figure 3 on the next page. The door is either open or closed, though intermediate
state-changing states are included to permit the software system to wait for optional door
opening and closing mechanisms to change the door’s closed versus opened state. A sliding door
with a motor to open and close the door is one example of such as door.

Page 5 of 17

Figure 1: Control System High-Level Context Diagram

Input DeviceInput Device Output DeviceOutput DeviceOutput Device

Configuration

Input Device

Output Device
Actuator

Output Device
Sensor

Software
System

Component

Multiple components

System to be built

Figure 2: Locked and Unlocked States

Locked

Unlocked

unlock

Lockingfailed / engage backup

success

Unlocking

 success

lock

 success

failed

failed / don’t engage
backup

State

State transition

Backup
unlock engaged

 backup failed

Steven Lawrance Lock-by-Wire Door Lock Detailed Design, v1.0

When locked, the door cannot open or close. In swinging
doors, however, locking a door that is open should not be
possible. That restriction will exist in the configuration so
that sliding doors can be locked open while swinging
doors cannot.

Visibility

To give the user visibility into the software system, which
satisfies requirements R7 and R9, both an alerting output
and a status display exist. These outputs do not have
feedback inputs. Their states simply reflect the states that
the system tells them to reflect.

Prioritization

When considering the input device and output feedback
states, prioritization needs to take place to consider some
states over others, which is documented in requirements
R3 and R5. To accomplish this, a set of conditions are checked in a predefined order to
determine what the desired lock states should be. These conditions are documented in use case
UC5.1.

Cyclic Executive

The software system will run as a cyclic executive that polls inputs for their states, determines
the desired output states, and, if needed, changes the output states. When specific events occur,
timeout variables will be set so that a different branch can be taken if more than a timeout’s time
has elapsed. This is depicted in the pseudocode below.

1. Save input states and output feedback states into variables

2. Determine new desired states, including timeout-based states

3. Actuate output devices to make their states eventually become the desired states

Note that the configuration will need to be read into variables before the cyclic executive begins,
which is specified in use case UC10.1. The configuration is read in once per system
initialization. As a result, when changes occur to the configuration, the system will need to be
reset for the new configuration to take effect.

Note that determining the new desired states is split into two different tasks in order to meet the
original timing requirements from the software requirements and specification. The four highest-
priority decision points are processed separately from the other decision points. The others are
processed less frequently, but only if the high-priority decision points didn’t signal a final
decision by returning true, which is explained later in this section. This permits the low-priority
decision points to be preempted by higher-priority tasks in the absence of processor-provided
preemptive multitasking. The StatusDisplay decision point is called directly by the cyclic
executive only if enough remaining time exists before the next deadline, making this the lowest
priority task in the system.

The next section discusses the detail for each component that the cyclic executive uses.

Page 6 of 17

Figure 3: Opened and Closed States

Opened

Closed

close

Opening

success

Closing

open

success

failed

failed

State

State transition

Steven Lawrance Lock-by-Wire Door Lock Detailed Design, v1.0

High-Level Design
The design of the architectural components exists in this section.

Saving Input States

Saving the input states into variables is a matter of reading in the values on both the input and the
output feedback pins (use case UC2.1) and then storing those values into bit and string variables.
In this version, however, implementation of serial strings is not necessary, leaving only bits for
inputs. Only those input and output feedback pins that are enabled in the configuration will be
read.

Pins that are marked as ignored in the configuration will not be instantiated and thus will be
ignored by the decision processors. This detail helps satisfy the configurability quality attribute
QA5, which stipulates the configurability of which pins to listen to.

Figure 4 above shows how the states are represented architecturally in a module view. Each state
has a StateType that corresponds with the type of input or output device that the State object
encapsulates. The OutputState interface extends the State interface to include the desired state as
well as the getDesiredStateChangeTimer() method that returns a Timer object that was started
when the last change to the desired state occurred. Note that setting the desired state of an output
to its preexisting desired state will not reset the Timer object. Knowing how much time has

Page 7 of 17

Figure 4: Module view of the states package

Steven Lawrance Lock-by-Wire Door Lock Detailed Design, v1.0

elapsed since the desired state was most recently changed will let the decision point modules
know when to time-out their prior operations, which is explained later.

In the current system, all states are boolean except for the status display, which is a text string.
Each State object instance maintains an in-memory state of the encapsulated input. Each
OutputState also stores its desired state and, when the desired state is set, will reset its desired
state modification timer if the new desired state does not equal the old desired state.

Some output states are write-only, meaning that they have no feedback inputs. Such output
devices are marked as such in the configuration and will return true when isWriteOnly() is
called. Output devices that have a feedback input will return false when isWriteOnly() is called.
Note that calling getState() on a write-only output device will return an undefined value.

The State interface includes two ways to obtain a device’s state: getState() and readState(). The
getState() method will return the most recently read state. If readState() had not been called
before the first getState() call, then getState()’s return value is undefined. The readState() method
returns true if the state had changed since the last call to readState() or false if it remains the
same as it was before. When the cyclic executive decides to save the states of input devices into
variables, it will call readState() on all devices, optionally including write-only devices. Calling
readState() on a write-only device will always return false.

Devices that interface with the microcontroller using a single boolean value will typically use
BooleanState and OutputBooleanState to read and write values, respectively. Because output
devices typically have feedback inputs to ascertain the success or failure of an output actuation,
OutputBooleanState extends BooleanState to permit easy reading and writing of values from and
to the same device.

Devices that interface with the microcontroller using serial communications can use the
SerialStringState and OutputSerialStringState. The status display is one such device in the
current design, though it’s a write-only device, making implementation of the input parts of
SerialStringState unnecessary at this time. Parity values for getInputParity() and
getOutputParity() are to be defined as constants and can be replaced by an enum class if desired.

This design permits future extensibility by making the state readers and writers generic with
clear guidelines as to when to return a cached value and when to query the actual input device for
its value, which is the difference between getState() and readState(), respectively. More input
and output device types can be added by adding a new StateType enumeration value and then
adjusting the decision point modules to consider this new input and adjust its desired state. If a
device’s state value type is neither binary nor text, then new State and OutputState objects can be
created to accommodate the new state value type.

Determining Desired States

To determine the desired states for the output devices (use case UC5.1), several steps need to
take place. A series of decision point modules will get executed to determine the desired
locked/unlocked and closed/opened states. The order that the modules gets processed in is very
important to the system’s quality attributes, including safety (QA1), responsiveness (QA2), and
security (QA4), especially with respect to timing requirements. Trusted human interactions (use
case UC3.1), fire safety, and security alarm inputs have very tight millisecond-level deadlines.

From an architectural perspective, each decision point module implements a common interface
that eases future extensibility. Because modules can be enabled and disabled via configuration,
the configurability quality attribute QA5 is satisfied. This architecture permits the door software

Page 8 of 17

Steven Lawrance Lock-by-Wire Door Lock Detailed Design, v1.0

to operate on a wide range of deployments, including sliding doors, swinging doors, and prison
cell doors.

As shown in Figure 5, every DecisionPoint module implements the computeDesiredStates()
method, which returns true to signal a final decision from the decision module or false if the
decision processor should query subsequent decision modules. The input and output states are
passed in as a Map of StateType objects to State objects.

DecisionPoint objects can use timing information from a state via the return values from
getLatestDesiredStateChangeTime() and getFeedbackTimeout(). If more than the timeout has
elapsed since the desired state changed, then appropriate abstract state transitions can take place,
such as activating the backup unlocking mechanism during a fire emergency.

The cyclic executive calls the three-parameter variant of the computeDesiredStates() method on
the DecisionProcessor for both the high-priority and low-priority decision processors. Note that
the cyclic executive will need to create these two DecisionProcessors as separate instances to
make scheduling easier. The three-parameter variant of the computeDesiredStates() method
permits the cyclic executive to pass in time slice information.

In the three-parameter computeDesiredStates() method, the time slice tells the decision processor
how many 100µs increments it must execute within, which the cyclic executive calculates from
the length of time taken by the higher-priority tasks and the next deadline. If the readState()
method returned true on any state to signal an input state change since the last call to the decision
processor’s computeDesiredStates() method, then the reset argument must be set to true;
otherwise, reset should be set to false. The reset parameter will tell the method whether it should
start from the beginning of the decisionPoints list when false or if it should resume from where it
previously left off when true. The method will execute decision points until either one returns
true, the amount of remaining time in the time slice is less than the number of 100µs increments
returned by the next decision point’s getComputeTime() method, or all decision points have been

Page 9 of 17

Figure 5: Module view of the decision point package

Steven Lawrance Lock-by-Wire Door Lock Detailed Design, v1.0

executed. The isProcessingFinished() method returns true if the last call to
computeDesiredStates() was able to process the last decision point. If no decision points are
registered, isProcessingFinished() always returns true. The executionTimer is used to measure
how much time has been spent executing decision points, which gets reset on each call to the
three-argument computeDesiredStates() method.

Overall, the DecisionProcessor calls the computeDesiredStates() method on the configuration-
enabled DecisionPoint modules until either one returns true or all have returned false. If one
DecisionPoint module returns true, then computeDesiredStates() in the DecisionProcessor
returns true; otherwise, it returns false. With this design, DecisionProcessor acts as an
aggregation of DecisionPoints. As a result, the DecisionProcessor’s implementation of
getComputeTime() will return the amount of worst-case time required to execute all of its
decision points, which it computes by adding the return values of calls to getComputeTime() on
all of its registered decision point instances. One interesting future possibility created by this
architecture that is not used in this current design is that DecisionProcessors can call other
DecisionProcessors via the DecisionPoint interface. DecisionProcessor satisfies use case
UC5.1.1.

Setting the Output States to the Desired States

After the desired states are updated, which is determined when either computeDesiredStates()
returns true or isProcessingFinished() returns true on both the high-priority and the low-priority
decision processors, the cyclic executive will call writeState() on all OutputState objects. That
method call will actuate an OutputState’s output device if the desired state differs from the last-
set output state, which is represented by the outputState field in the output state object
implementations (use case UC1.1). After writeState() sets the output state, it sets outputState
equal to the desired state so that subsequent calls to writeState() won’t re-actuate the output
device until the desired state changes. The writeState() method returns true if the device’s
actuated output state was changed or false if it was not changed.

State Compositions

The abstract states discussed earlier are derived concretely from the individual binary and text
states. In the current design, these states are the door’s open/closed status, the lock’s
locked/unlocked status, the audible alarm’s state, and the status display’s text. These abstract
states are determined using the following combinations of concrete states and their transitions.
Each abstract state can be displayed in the status display to reflect the door’s current status.

● Door opening: The doorOpen desired state is true and the doorOpen feedback state is
false. The doorOpen feedback state will be true when it the door is sufficiently opened as
determined by hardware sensors

○ If either the doorOpen feedback state transitions to true within the configured timeout
period or the doorClose feedback state, if configured, is false after the configured
timeout period expires, the door’s state transitions to opened

○ If the doorOpen feedback state does not transition within the configured timeout
period and the doorClose feedback state, if configured, is true, then the door’s state
transitions back to closed

● Door opened: The doorOpen desired and feedback states are both true

○ The door’s state can transition to “closing” when the “closing” condition is met

Page 10 of 17

Steven Lawrance Lock-by-Wire Door Lock Detailed Design, v1.0

● Door closing: The doorClose desired state is true and the doorClose feedback state is
false

○ If the doorClose feedback state transitions to true within the configured timeout
period, then the door’s state transitions to closed

○ If the doorClose feedback state does not transition within the configured timeout
period, then the door’s state transitions back to opened

● Door closed: The doorClose desired state is true and the doorClose feedback state is true

○ The door’s state can transition to “opening” when the “opening” condition is met

● Lock unlocking: The primaryLock desired state is false and the primaryLock feedback
state is true

○ If the primaryLock feedback state transitions to false within the configured timeout
period, then the lock’s state transitions to unlocked

○ If the primaryLock feedback state does not transition within the configured timeout
period and either the fireSafety input is true or both the manual and trusted input
states are true, then the lock’s state transitions to “backup unlock engaged.” Note that
if the manual and trusted input states are true, then the timeout period is extended by
15 seconds after activating audibleAlarm and updating statusDisplay

○ If the primaryLock feedback state does not transition within the configured timeout
period and the previous set of conditions did not apply, then transition the lock’s state
back to locked

● Lock unlocked: The primaryLock desired state is false and the primaryLock feedback
state is false

○ The lock’s state can transition to “locking” when the “locking” condition is met

● Backup unlock engaged: The backupUnlock desired state is true and the backupUnlock
feedback state is false

○ If the backupUnlock feedback state transitions to true within the configured timeout
period, then the lock’s state transitions to unlocked

○ If the backupUnlock feedback state does not transition within the configured timeout
period, then the lock’s state transitions back to locked

● Lock locking: The primaryLock desired state is true and the primaryLock feedback state
is false

○ If the primaryLock feedback state transitions to true within the configured timeout
period, then the lock’s state transitions to locked

○ If the primaryLock feedback state does not transition within the configured timeout
period, then the lock’s state transitions back to unlocked

● Lock locked: The primaryLock desired state is true and the primaryLock feedback state is
true

○ The lock’s state can transition to “unlocking” when the “unlocking” condition is met

Page 11 of 17

Steven Lawrance Lock-by-Wire Door Lock Detailed Design, v1.0

Decision Points
The following table associates decision point modules with their use cases, which can then be
used to refine this design into pseudocode. This table is sorted by execution order.

Decision Point Use Cases

BackupUnlock UC8.1 and UC8.2

Trusted UC3.1 and UC5.1.2

FireSafety UC5.1.3

SecurityAlarm UC5.1.4

TrustedProximity UC5.1.5

UntrustedProximity UC5.1.6 and UC5.1.7

Environment UC5.1.8

Untrusted UC5.1.9

StatusDisplay UC7.1 and UC9.1

Page 12 of 17

Steven Lawrance Lock-by-Wire Door Lock Detailed Design, v1.0

Platform Technologies
This section discusses the technologies that will be used to implement this design and includes
the processor and language suggestions and minimum requirements.

Processor

The software system requires a hefty number of input pins, a fair number of output pins, periodic
checking of input states, and, as a derived requirement from the reliability, safety, and security
quality attributes, low power consumption so that it can operate in the absence of electricity.
Operation during a power failure will require either a rechargeable battery, capacitors, flywheels,
or a combination.

To accommodate and balance the requirements and quality attributes while permitting the use of
an object-oriented language such as Java, this design document recommends the Parallax Javelin
microcontroller, which is available at http://www.parallax.com/javelin. This processor features
16 pins that can be used for either input or output. Binary, analog, and serial inputs and outputs
are permitted. For performance, the Javelin processor is able to execute serial I/O in the
background, which substantially reduces the execution time of updating the status display. This
processor runs all instructions in a single thread using Java-like language semantics. Garbage
collection does not exist, so any objects that are allocated remain allocated until the device is
reset, which works well with the architecture’s use of primitive method return values. According
to the documentation, the Javelin can be reprogrammed up to one million times, which should be
more than sufficient for most deployment scenarios as no state needs to be persisted to EEPROM
except for the configuration that an installer manually loads as part of use case UC10.2.

This processor costs around $80 per unit in bulk. While less expensive solutions are possible,
trade-offs exist in lower-end solutions, and this processor offers attributes that help promote this
system’s functional requirements and quality attributes, which is explained below.

Although this processor permits only a single thread of execution, it does perform some tasks in
the background such as serial I/O. It also has a background timer that supports multiple timer
instances, which can help with the cyclic executive for rate monotonic scheduling.

If all the features in the current design are enabled in the configuration, then 22 pins are required:

● One pin for the following inputs: trusted, fireSafety, securityAlarm, proximity,
environment, untrusted, manual, requestOpen, requestClose, requestLock, and
requestUnlock

● Two pins – one output and one feedback input – for the following outputs: primaryLock,
backupUnlock, doorOpen, and doorClose

● One pin for the following output: audibleAlarm

● Two pins for the following output to handle CTS (clear to send) and Tx (transmit):
statusDisplay

Because 22 is greater than 16, some multiplexing might be required. Fortunately, the Javelin
processor supports analog-to-digital (ADC) conversion that can be used in combination with a
multiplexer chip to handle more than one digital input on the same pin. A time penalty exists in
the analog-to-digital conversion, so only a small set of analog values that can be counted quickly
should be used. It’s possible to multiplex more than 2 input devices as this process requires two
pins on the Javelin. A reasonable number might be 8, though this should be verified through

Page 13 of 17

http://www.parallax.com/javelin

Steven Lawrance Lock-by-Wire Door Lock Detailed Design, v1.0

experimentation to ensure that the ADC process is not too slow with 8 inputs being multiplexed.
An alternative to multiplexing could be to use another similar microcontroller with more input
pins. Another possibility is to reuse the main COM port that is used for programming the Javelin
for the status display and not using one of the low-priority pins, such as environment, which
reduces the I/O pin requirements a little. The doorOpen and doorClose output pins could be
digitally multiplexed as they are the inverse of each other, further enforcing their mutual
exclusion. Their feedback input pins, however, can continue to be separate or even multiplexed
with an analog signal.

The configuration can be implemented in the Javelin as it has sufficient memory that is
rewritable, satisfying the constraint of being able to handle different timeouts for different output
devices. Configuration reprogramming and software updates can be achieved with a COM port
connection to a computer with the Javelin. Due to this ease of configuration and software
updating, quality attribute QA6 can be met, which specifies that updates and configurations
should be possible within five minutes. The COM port must be accessible in some way without
having to deconstruct the door to completely adhere to QA6, preferably from a trusted side of the
door. Note that if the status display is also connected to the COM port, then the status display
might display random garbage while the Javelin is reprogrammed. A switch that turns off the
status display during reprogramming can help avoid that and also remove possible current draws
from the status display on the serial lines during reprogramming.

Language

Due to the object-oriented design of this system, using an object-oriented language is
advantageous as it can help ensure that an implementation follows this design document, but this
is not absolutely necessary. Due to the presence of interfaces, collections, and implementations,
using an object-oriented language should be strongly preferred.

On other processors, using C++ or possibly even a full Java is possible, though other attributes
and considerations such as cost and complexity need to be looked into.

Input Resistor-Capacitor (RC) Circuits

In addition to the Javelin microcontroller and the supporting hardware, the input pins might need
debouncing and/or delay circuits. One popular and inexpensive way to accomplish this is through
a resistor-capacitor (RC) circuit on each input pin that either connects to a simple ground-
conducting switch or has delay requirements.

For simple ground-conducting switches, the value of the pin read on the microcontroller can be
inverted in software so that a closed switch is interpreted as a true value. An open switch would
then be interpreted as a false value after the capacitor charges up.

For inputs that have associated hold delays such as the manual input, the RC circuit can
discharge when the input goes high, which is possible with either an inverter or an already-
inverted input. The RC time constant can then be high enough to make signal build back up to a
CMOS high value after five seconds, satisfying use case UC6.1. Similar to the ground-
conducting debouncing circuits, the state of the input pin can be inverted easily in software.

Page 14 of 17

Steven Lawrance Lock-by-Wire Door Lock Detailed Design, v1.0

Schedulability Analysis
Using the Parallax Javelin as discussed in the previous section, which executes 8000 instructions
per second according to the documentation, this section performs a schedulability analysis to
ensure that this system will work on this processor and meet its real-time requirements.

The following table lists the period, the estimated number of instructions in a worst-case
branching scenario, and execution time of each task.

ID Task Period Instr. Exec Time

1 Recognize and prioritize input signals 10ms 30 3.75ms

2 Process the high-priority decision points (BackupUnlock,
Trusted, FireSafety, and SecurityAlarm)

40ms 60 7.50ms

3 Actuate the output devices to reflect the desired states 50ms 50 5.00ms

4 Process the low-priority decision points
(TrustedProximity, UntrustedProximity, Environment,
UntrustedUser)

250ms 140 17.50ms

5 Update the status display using the StatusDisplay
decision point

500ms 40 5.00ms

The high-priority decision points are split from the low-priority decision points to give
preference to them and to increase the likeliness of meeting the original timing requirements.
This set of tasks happens to be schedulable as evidenced by the analysis below:

U T=∑
n=1

5 Cn
T n

=
3.75
10

7.50
40

5.00
50

17.50
250

5.00
500

=0.7425

U n=n 2
1
n−1=U 5=5 2

1
5−1=0.7435

UT≤U 5 because 0.7425≤0.7435

Because the Parallax Javelin microcontroller does not have a scheduler, a simple rate monotonic
scheduler needs to be created in the cyclic executive. Fortunately, the architecture of this system
permits the high-priority decision points to be split easily from the others. Using a timer in the
Javelin, it’s possible for the scheduler to know how much slack time exists for both the high-
priority and low-priority decision processors after executing higher-priority tasks. The cyclic
executive then tells a decision processor to execute within the calculated execution. This permits
the decision processors to spread their executions over several cycles within a single-threaded
environment.

The timing diagram in Figure 6 on the next page visually demonstrates the schedulability of the
system when all tasks are ready to run at time zero. This diagram assumes that as many branches
as possible are taken in each task, making this a worst case analysis. Because it’s schedulable in
the worst case, the system is schedulable in less-than-worst case scenarios, too.

The decision processor is able to execute decision points based on available time to help the
cyclic executive achieve its timing objectives and implement a form of preemption. Inputs are
checked frequently and high-priority decision points are processed in case if an important state
change needs to occur to meet the original timing requirements. Lower-priority decision points
are processed if a higher-priority decision point did not mark a decision as final, which means
that all higher-priority decision point modules returned false on computeDesiredState().

Page 15 of 17

Steven Lawrance Lock-by-Wire Door Lock Detailed Design, v1.0

Figure 6: Timing diagram of the schedule

With a schedulable system, the original timing requirements of reading inputs within 10ms,
actuating output devices in an emergency within 50ms, and engaging backup unlocking
mechanisms in a fire emergency within 50ms hold true. In addition to this, trusted input can
easily meet its timing requirements when used with fast-actuating locking mechanisms as it’s
also considered a high-priority decision point. This design permits emergency actions to preempt
low-priority processing such as prioritizing a fire emergency over opening a door to let warm air
inside and within a real-time boundary.

Page 16 of 17

τ1

τ2
τ3

0 10 20 30 40 50 60 70 80 90 100

τ4
τ5

Steven Lawrance Lock-by-Wire Door Lock Detailed Design, v1.0

References
Javelin Stamp Manual, version 1.0. Parallax, Inc.,

http://www.parallax.com/dl/docs/prod/javelin/JavelinStampMan1-0.pdf

Page 17 of 17

http://www.parallax.com/dl/docs/prod/javelin/JavelinStampMan1-0.pdf

	Introduction
	Architecture
	Context
	Abstract States
	Visibility
	Prioritization
	Cyclic Executive

	High-Level Design
	Saving Input States
	Determining Desired States
	Setting the Output States to the Desired States
	State Compositions

	Decision Points
	Platform Technologies
	Processor
	Language
	Input Resistor-Capacitor (RC) Circuits

	Schedulability Analysis
	References

