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Introduction
This document describes the detailed design for the lock-by-wire door lock system using a 
process of gradual refinement with traceability. The requirements and use cases are captured into 
an appropriate architecture. The architecture is then refined into an object-oriented detailed 
design. An overview of the software’s requirements appears below.

The software will take inputs from multiple sources to drive the desired states of output devices. 
The desired states will drive physical mechanisms, and sensors from those physical mechanisms 
will feed input back into the software as the actual states. The system’s current status can be 
displayed on a notification output along with any alerts that the user should know about. When 
necessary, the software can activate backup unlocking mechanisms to force the door to unlock in 
the event of a primary locking mechanism’s failure to unlock.

The system generally classifies users into three different categories: trusted users, untrusted 
users, and installers. Trusted users are typically either authenticated and authorized or simply on 
the trusted side of the door, such as the inside of a house’s front door. Untrusted users are those 
who are not authorized to affect the door’s state when the door is locked. This models the outside 
of a residential door or the inside of a prison cell door.

The following table summarizes the system’s timing requirements in terms of requirements and 
timeouts, sorted by increasing order of deadline.

Requirement Deadline

The system shall recognize and prioritize input signals within 10ms 10 milliseconds

The backup unlocking mechanism shall begin to be activated within 50ms of 
determining that the backup unlocking mechanism should be activated

50 milliseconds

When the fire alarm input signal indicates that the building is on fire, then the 
door shall begin to disengage its primary locking mechanisms within 50ms

50 milliseconds

The primary locking mechanism shall change its state from locked to 
unlocked or vice-versa within 3 seconds by default unless if its configuration 
states different maximum timeout values

3 seconds

When the manual intervention signal is set, it will remain set for five seconds 
since the time that the signal becomes unset

5 seconds

When a trusted user is trying to open the door and the system determines that 
the primary locking mechanisms failed, then the system will wait for 15 
seconds before it engages the backup unlocking mechanisms

15 seconds

Software updates can occur in five minutes or less 5 minutes

For more information on the background of this project, its requirements, and its quality 
attributes, please refer to the requirements and specification document for the lock-by-wire door 
lock system.
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Architecture

Context

Collectively, the requirements of this system call for a real-time control system that drives output 
devices based on inputs, a configuration, and output feedback. Some important decisions are 
based on time-based information, such as how long a door knob is held down. Other decisions 
are formed by an analysis of the separate input states and the configuration, which are discussed 
in requirements R4 and R10. Generally, the system is trying to get the output states to match 
their appropriate desired states for a given set of inputs, which is documented in requirements R1 
and R2. When that cannot 
be performed after a 
timeout, the desired output 
states might change to 
other values for either 
alerting or forced 
unlocking, which is 
covered in requirement R8. 
Manual intervention, 
which is specified in 
requirement R6, is 
considered an input device. 
This general relationship is 
depicted in Figure 1, 
which shows the high-
level context diagram.

Abstract States

The system maintains several abstract 
states, each which are modeled 
separately. Figure 2 shows the locked 
and unlocked states. The system starts 
with its current state. When a locked 
door needs to be unlocked, it tells the 
proper output device to unlock and waits 
until it either unlocks or a timeout 
occurs. Depending on other states, the 
backup unlock mechanism might engage 
if the primary locking mechanism fails 
to unlock. Note that the locking 
operation does not have an emergency 
locking mechanism in this system.

Another state tracked by the system is 
the door’s open versus closed state. This 
is depicted in Figure 3 on the next page. The door is either open or closed, though intermediate 
state-changing states are included to permit the software system to wait for optional door 
opening and closing mechanisms to change the door’s closed versus opened state. A sliding door 
with a motor to open and close the door is one example of such as door.
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Figure 1: Control System High-Level Context Diagram
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Figure 2: Locked and Unlocked States
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When locked, the door cannot open or close. In swinging 
doors, however, locking a door that is open should not be 
possible. That restriction will exist in the configuration so 
that sliding doors can be locked open while swinging 
doors cannot.

Visibility

To give the user visibility into the software system, which 
satisfies requirements R7 and R9, both an alerting output 
and a status display exist. These outputs do not have 
feedback inputs. Their states simply reflect the states that 
the system tells them to reflect.

Prioritization

When considering the input device and output feedback 
states, prioritization needs to take place to consider some 
states over others, which is documented in requirements 
R3 and R5. To accomplish this, a set of conditions are checked in a predefined order to 
determine what the desired lock states should be. These conditions are documented in use case 
UC5.1.

Cyclic Executive

The software system will run as a cyclic executive that polls inputs for their states, determines 
the desired output states, and, if needed, changes the output states. When specific events occur, 
timeout variables will be set so that a different branch can be taken if more than a timeout’s time 
has elapsed. This is depicted in the pseudocode below.

1. Save input states and output feedback states into variables

2. Determine new desired states, including timeout-based states

3. Actuate output devices to make their states eventually become the desired states

Note that the configuration will need to be read into variables before the cyclic executive begins, 
which is specified in use case UC10.1. The configuration is read in once per system 
initialization. As a result, when changes occur to the configuration, the system will need to be 
reset for the new configuration to take effect.

Note that determining the new desired states is split into two different tasks in order to meet the 
original timing requirements from the software requirements and specification. The four highest-
priority decision points are processed separately from the other decision points. The others are 
processed less frequently, but only if the high-priority decision points didn’t signal a final 
decision by returning true, which is explained later in this section. This permits the low-priority 
decision points to be preempted by higher-priority tasks in the absence of processor-provided 
preemptive multitasking. The StatusDisplay decision point is called directly by the cyclic 
executive only if enough remaining time exists before the next deadline, making this the lowest 
priority task in the system.

The next section discusses the detail for each component that the cyclic executive uses.
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Figure 3: Opened and Closed States
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High-Level Design
The design of the architectural components exists in this section.

Saving Input States

Saving the input states into variables is a matter of reading in the values on both the input and the 
output feedback pins (use case UC2.1) and then storing those values into bit and string variables. 
In this version, however, implementation of serial strings is not necessary, leaving only bits for 
inputs. Only those input and output feedback pins that are enabled in the configuration will be 
read.

Pins that are marked as ignored in the configuration will not be instantiated and thus will be 
ignored by the decision processors. This detail helps satisfy the configurability quality attribute 
QA5, which stipulates the configurability of which pins to listen to.

Figure 4 above shows how the states are represented architecturally in a module view. Each state 
has a StateType that corresponds with the type of input or output device that the State object 
encapsulates. The OutputState interface extends the State interface to include the desired state as 
well as the getDesiredStateChangeTimer() method that returns a Timer object that was started 
when the last change to the desired state occurred. Note that setting the desired state of an output 
to its preexisting desired state will not reset the Timer object. Knowing how much time has 
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Figure 4: Module view of the states package
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elapsed since the desired state was most recently changed will let the decision point modules 
know when to time-out their prior operations, which is explained later.

In the current system, all states are boolean except for the status display, which is a text string. 
Each State object instance maintains an in-memory state of the encapsulated input. Each 
OutputState also stores its desired state and, when the desired state is set, will reset its desired 
state modification timer if the new desired state does not equal the old desired state.

Some output states are write-only, meaning that they have no feedback inputs. Such output 
devices are marked as such in the configuration and will return true when isWriteOnly() is 
called. Output devices that have a feedback input will return false when isWriteOnly() is called. 
Note that calling getState() on a write-only output device will return an undefined value.

The State interface includes two ways to obtain a device’s state: getState() and readState(). The 
getState() method will return the most recently read state. If readState() had not been called 
before the first getState() call, then getState()’s return value is undefined. The readState() method 
returns true if the state had changed since the last call to readState() or false if it remains the 
same as it was before. When the cyclic executive decides to save the states of input devices into 
variables, it will call readState() on all devices, optionally including write-only devices. Calling 
readState() on a write-only device will always return false.

Devices that interface with the microcontroller using a single boolean value will typically use 
BooleanState and OutputBooleanState to read and write values, respectively. Because output 
devices typically have feedback inputs to ascertain the success or failure of an output actuation, 
OutputBooleanState extends BooleanState to permit easy reading and writing of values from and 
to the same device.

Devices that interface with the microcontroller using serial communications can use the 
SerialStringState and OutputSerialStringState. The status display is one such device in the 
current design, though it’s a write-only device, making implementation of the input parts of 
SerialStringState unnecessary at this time. Parity values for getInputParity() and 
getOutputParity() are to be defined as constants and can be replaced by an enum class if desired.

This design permits future extensibility by making the state readers and writers generic with 
clear guidelines as to when to return a cached value and when to query the actual input device for 
its value, which is the difference between getState() and readState(), respectively. More input 
and output device types can be added by adding a new StateType enumeration value and then 
adjusting the decision point modules to consider this new input and adjust its desired state. If a 
device’s state value type is neither binary nor text, then new State and OutputState objects can be 
created to accommodate the new state value type.

Determining Desired States

To determine the desired states for the output devices (use case UC5.1), several steps need to 
take place. A series of decision point modules will get executed to determine the desired 
locked/unlocked and closed/opened states. The order that the modules gets processed in is very 
important to the system’s quality attributes, including safety (QA1), responsiveness (QA2), and 
security (QA4), especially with respect to timing requirements. Trusted human interactions (use 
case UC3.1), fire safety, and security alarm inputs have very tight millisecond-level deadlines.

From an architectural perspective, each decision point module implements a common interface 
that eases future extensibility. Because modules can be enabled and disabled via configuration, 
the configurability quality attribute QA5 is satisfied. This architecture permits the door software 
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to operate on a wide range of deployments, including sliding doors, swinging doors, and prison 
cell doors.

As shown in Figure 5, every DecisionPoint module implements the computeDesiredStates() 
method, which returns true to signal a final decision from the decision module or false if the 
decision processor should query subsequent decision modules. The input and output states are 
passed in as a Map of StateType objects to State objects.

DecisionPoint objects can use timing information from a state via the return values from 
getLatestDesiredStateChangeTime() and getFeedbackTimeout(). If more than the timeout has 
elapsed since the desired state changed, then appropriate abstract state transitions can take place, 
such as activating the backup unlocking mechanism during a fire emergency.

The cyclic executive calls the three-parameter variant of the computeDesiredStates() method on 
the DecisionProcessor for both the high-priority and low-priority decision processors. Note that 
the cyclic executive will need to create these two DecisionProcessors as separate instances to 
make scheduling easier. The three-parameter variant of the computeDesiredStates() method 
permits the cyclic executive to pass in time slice information.

In the three-parameter computeDesiredStates() method, the time slice tells the decision processor 
how many 100µs increments it must execute within, which the cyclic executive calculates from 
the length of time taken by the higher-priority tasks and the next deadline. If the readState() 
method returned true on any state to signal an input state change since the last call to the decision 
processor’s computeDesiredStates() method, then the reset argument must be set to true; 
otherwise, reset should be set to false. The reset parameter will tell the method whether it should 
start from the beginning of the decisionPoints list when false or if it should resume from where it 
previously left off when true. The method will execute decision points until either one returns 
true, the amount of remaining time in the time slice is less than the number of 100µs increments 
returned by the next decision point’s getComputeTime() method, or all decision points have been 
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executed. The isProcessingFinished() method returns true if the last call to 
computeDesiredStates() was able to process the last decision point. If no decision points are 
registered, isProcessingFinished() always returns true. The executionTimer is used to measure 
how much time has been spent executing decision points, which gets reset on each call to the 
three-argument computeDesiredStates() method.

Overall, the DecisionProcessor calls the computeDesiredStates() method on the configuration-
enabled DecisionPoint modules until either one returns true or all have returned false. If one 
DecisionPoint module returns true, then computeDesiredStates() in the DecisionProcessor 
returns true; otherwise, it returns false. With this design, DecisionProcessor acts as an 
aggregation of DecisionPoints. As a result, the DecisionProcessor’s implementation of 
getComputeTime() will return the amount of worst-case time required to execute all of its 
decision points, which it computes by adding the return values of calls to getComputeTime() on 
all of its registered decision point instances. One interesting future possibility created by this 
architecture that is not used in this current design is that DecisionProcessors can call other 
DecisionProcessors via the DecisionPoint interface. DecisionProcessor satisfies use case 
UC5.1.1.

Setting the Output States to the Desired States

After the desired states are updated, which is determined when either computeDesiredStates() 
returns true or isProcessingFinished() returns true on both the high-priority and the low-priority 
decision processors, the cyclic executive will call writeState() on all OutputState objects. That 
method call will actuate an OutputState’s output device if the desired state differs from the last-
set output state, which is represented by the outputState field in the output state object 
implementations (use case UC1.1). After writeState() sets the output state, it sets outputState 
equal to the desired state so that subsequent calls to writeState() won’t re-actuate the output 
device until the desired state changes. The writeState() method returns true if the device’s 
actuated output state was changed or false if it was not changed.

State Compositions

The abstract states discussed earlier are derived concretely from the individual binary and text 
states. In the current design, these states are the door’s open/closed status, the lock’s 
locked/unlocked status, the audible alarm’s state, and the status display’s text. These abstract 
states are determined using the following combinations of concrete states and their transitions. 
Each abstract state can be displayed in the status display to reflect the door’s current status.

● Door opening: The doorOpen desired state is true and the doorOpen feedback state is 
false. The doorOpen feedback state will be true when it the door is sufficiently opened as 
determined by hardware sensors

○ If either the doorOpen feedback state transitions to true within the configured timeout 
period or the doorClose feedback state, if configured, is false after the configured 
timeout period expires, the door’s state transitions to opened

○ If the doorOpen feedback state does not transition within the configured timeout 
period and the doorClose feedback state, if configured, is true, then the door’s state 
transitions back to closed

● Door opened: The doorOpen desired and feedback states are both true

○ The door’s state can transition to “closing” when the “closing” condition is met
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● Door closing: The doorClose desired state is true and the doorClose feedback state is 
false

○ If the doorClose feedback state transitions to true within the configured timeout 
period, then the door’s state transitions to closed

○ If the doorClose feedback state does not transition within the configured timeout 
period, then the door’s state transitions back to opened

● Door closed: The doorClose desired state is true and the doorClose feedback state is true

○ The door’s state can transition to “opening” when the “opening” condition is met

● Lock unlocking: The primaryLock desired state is false and the primaryLock feedback 
state is true

○ If the primaryLock feedback state transitions to false within the configured timeout 
period, then the lock’s state transitions to unlocked

○ If the primaryLock feedback state does not transition within the configured timeout 
period and either the fireSafety input is true or both the manual and trusted input 
states are true, then the lock’s state transitions to “backup unlock engaged.” Note that 
if the manual and trusted input states are true, then the timeout period is extended by 
15 seconds after activating audibleAlarm and updating statusDisplay

○ If the primaryLock feedback state does not transition within the configured timeout 
period and the previous set of conditions did not apply, then transition the lock’s state 
back to locked

● Lock unlocked: The primaryLock desired state is false and the primaryLock feedback 
state is false

○ The lock’s state can transition to “locking” when the “locking” condition is met

● Backup unlock engaged: The backupUnlock desired state is true and the backupUnlock 
feedback state is false

○ If the backupUnlock feedback state transitions to true within the configured timeout 
period, then the lock’s state transitions to unlocked

○ If the backupUnlock feedback state does not transition within the configured timeout 
period, then the lock’s state transitions back to locked

● Lock locking: The primaryLock desired state is true and the primaryLock feedback state 
is false

○ If the primaryLock feedback state transitions to true within the configured timeout 
period, then the lock’s state transitions to locked

○ If the primaryLock feedback state does not transition within the configured timeout 
period, then the lock’s state transitions back to unlocked

● Lock locked: The primaryLock desired state is true and the primaryLock feedback state is 
true

○ The lock’s state can transition to “unlocking” when the “unlocking” condition is met
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Decision Points
The following table associates decision point modules with their use cases, which can then be 
used to refine this design into pseudocode. This table is sorted by execution order.

Decision Point Use Cases

BackupUnlock UC8.1 and UC8.2

Trusted UC3.1 and UC5.1.2

FireSafety UC5.1.3

SecurityAlarm UC5.1.4

TrustedProximity UC5.1.5

UntrustedProximity UC5.1.6 and UC5.1.7

Environment UC5.1.8

Untrusted UC5.1.9

StatusDisplay UC7.1 and UC9.1
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Platform Technologies
This section discusses the technologies that will be used to implement this design and includes 
the processor and language suggestions and minimum requirements.

Processor

The software system requires a hefty number of input pins, a fair number of output pins, periodic 
checking of input states, and, as a derived requirement from the reliability, safety, and security 
quality attributes, low power consumption so that it can operate in the absence of electricity. 
Operation during a power failure will require either a rechargeable battery, capacitors, flywheels, 
or a combination.

To accommodate and balance the requirements and quality attributes while permitting the use of 
an object-oriented language such as Java, this design document recommends the Parallax Javelin 
microcontroller, which is available at http://www.parallax.com/javelin. This processor features 
16 pins that can be used for either input or output. Binary, analog, and serial inputs and outputs 
are permitted. For performance, the Javelin processor is able to execute serial I/O in the 
background, which substantially reduces the execution time of updating the status display. This 
processor runs all instructions in a single thread using Java-like language semantics. Garbage 
collection does not exist, so any objects that are allocated remain allocated until the device is 
reset, which works well with the architecture’s use of primitive method return values. According 
to the documentation, the Javelin can be reprogrammed up to one million times, which should be 
more than sufficient for most deployment scenarios as no state needs to be persisted to EEPROM 
except for the configuration that an installer manually loads as part of use case UC10.2.

This processor costs around $80 per unit in bulk. While less expensive solutions are possible, 
trade-offs exist in lower-end solutions, and this processor offers attributes that help promote this 
system’s functional requirements and quality attributes, which is explained below.

Although this processor permits only a single thread of execution, it does perform some tasks in 
the background such as serial I/O. It also has a background timer that supports multiple timer 
instances, which can help with the cyclic executive for rate monotonic scheduling.

If all the features in the current design are enabled in the configuration, then 22 pins are required:

● One pin for the following inputs: trusted, fireSafety, securityAlarm, proximity, 
environment, untrusted, manual, requestOpen, requestClose, requestLock, and 
requestUnlock

● Two pins – one output and one feedback input – for the following outputs: primaryLock, 
backupUnlock, doorOpen, and doorClose

● One pin for the following output: audibleAlarm

● Two pins for the following output to handle CTS (clear to send) and Tx (transmit): 
statusDisplay

Because 22 is greater than 16, some multiplexing might be required. Fortunately, the Javelin 
processor supports analog-to-digital (ADC) conversion that can be used in combination with a 
multiplexer chip to handle more than one digital input on the same pin. A time penalty exists in 
the analog-to-digital conversion, so only a small set of analog values that can be counted quickly 
should be used. It’s possible to multiplex more than 2 input devices as this process requires two 
pins on the Javelin. A reasonable number might be 8, though this should be verified through 
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experimentation to ensure that the ADC process is not too slow with 8 inputs being multiplexed. 
An alternative to multiplexing could be to use another similar microcontroller with more input 
pins. Another possibility is to reuse the main COM port that is used for programming the Javelin 
for the status display and not using one of the low-priority pins, such as environment, which 
reduces the I/O pin requirements a little. The doorOpen and doorClose output pins could be 
digitally multiplexed as they are the inverse of each other, further enforcing their mutual 
exclusion. Their feedback input pins, however, can continue to be separate or even multiplexed 
with an analog signal.

The configuration can be implemented in the Javelin as it has sufficient memory that is 
rewritable, satisfying the constraint of being able to handle different timeouts for different output 
devices. Configuration reprogramming and software updates can be achieved with a COM port 
connection to a computer with the Javelin. Due to this ease of configuration and software 
updating, quality attribute QA6 can be met, which specifies that updates and configurations 
should be possible within five minutes. The COM port must be accessible in some way without 
having to deconstruct the door to completely adhere to QA6, preferably from a trusted side of the 
door. Note that if the status display is also connected to the COM port, then the status display 
might display random garbage while the Javelin is reprogrammed. A switch that turns off the 
status display during reprogramming can help avoid that and also remove possible current draws 
from the status display on the serial lines during reprogramming.

Language

Due to the object-oriented design of this system, using an object-oriented language is 
advantageous as it can help ensure that an implementation follows this design document, but this 
is not absolutely necessary. Due to the presence of interfaces, collections, and implementations, 
using an object-oriented language should be strongly preferred.

On other processors, using C++ or possibly even a full Java is possible, though other attributes 
and considerations such as cost and complexity need to be looked into.

Input Resistor-Capacitor (RC) Circuits

In addition to the Javelin microcontroller and the supporting hardware, the input pins might need 
debouncing and/or delay circuits. One popular and inexpensive way to accomplish this is through 
a resistor-capacitor (RC) circuit on each input pin that either connects to a simple ground-
conducting switch or has delay requirements.

For simple ground-conducting switches, the value of the pin read on the microcontroller can be 
inverted in software so that a closed switch is interpreted as a true value. An open switch would 
then be interpreted as a false value after the capacitor charges up.

For inputs that have associated hold delays such as the manual input, the RC circuit can 
discharge when the input goes high, which is possible with either an inverter or an already-
inverted input. The RC time constant can then be high enough to make signal build back up to a 
CMOS high value after five seconds, satisfying use case UC6.1. Similar to the ground-
conducting debouncing circuits, the state of the input pin can be inverted easily in software.
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Schedulability Analysis
Using the Parallax Javelin as discussed in the previous section, which executes 8000 instructions 
per second according to the documentation, this section performs a schedulability analysis to 
ensure that this system will work on this processor and meet its real-time requirements.

The following table lists the period, the estimated number of instructions in a worst-case 
branching scenario, and execution time of each task.

ID Task Period Instr. Exec Time

1 Recognize and prioritize input signals 10ms 30 3.75ms

2 Process the high-priority decision points (BackupUnlock, 
Trusted, FireSafety, and SecurityAlarm)

40ms 60 7.50ms

3 Actuate the output devices to reflect the desired states 50ms 50 5.00ms

4 Process the low-priority decision points 
(TrustedProximity, UntrustedProximity, Environment, 
UntrustedUser)

250ms 140 17.50ms

5 Update the status display using the StatusDisplay 
decision point

500ms 40 5.00ms

The high-priority decision points are split from the low-priority decision points to give 
preference to them and to increase the likeliness of meeting the original timing requirements. 
This set of tasks happens to be schedulable as evidenced by the analysis below:

U T=∑
n=1

5 Cn
T n

=
3.75
10


7.50
40


5.00
50


17.50
250


5.00
500

=0.7425

U n=n 2
1
n−1=U 5=5 2

1
5−1=0.7435

UT≤U 5 because 0.7425≤0.7435

Because the Parallax Javelin microcontroller does not have a scheduler, a simple rate monotonic 
scheduler needs to be created in the cyclic executive. Fortunately, the architecture of this system 
permits the high-priority decision points to be split easily from the others. Using a timer in the 
Javelin, it’s possible for the scheduler to know how much slack time exists for both the high-
priority and low-priority decision processors after executing higher-priority tasks. The cyclic 
executive then tells a decision processor to execute within the calculated execution. This permits 
the decision processors to spread their executions over several cycles within a single-threaded 
environment.

The timing diagram in Figure 6 on the next page visually demonstrates the schedulability of the 
system when all tasks are ready to run at time zero. This diagram assumes that as many branches 
as possible are taken in each task, making this a worst case analysis. Because it’s schedulable in 
the worst case, the system is schedulable in less-than-worst case scenarios, too.

The decision processor is able to execute decision points based on available time to help the 
cyclic executive achieve its timing objectives and implement a form of preemption. Inputs are 
checked frequently and high-priority decision points are processed in case if an important state 
change needs to occur to meet the original timing requirements. Lower-priority decision points 
are processed if a higher-priority decision point did not mark a decision as final, which means 
that all higher-priority decision point modules returned false on computeDesiredState().
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Figure 6: Timing diagram of the schedule

With a schedulable system, the original timing requirements of reading inputs within 10ms, 
actuating output devices in an emergency within 50ms, and engaging backup unlocking 
mechanisms in a fire emergency within 50ms hold true. In addition to this, trusted input can 
easily meet its timing requirements when used with fast-actuating locking mechanisms as it’s 
also considered a high-priority decision point. This design permits emergency actions to preempt 
low-priority processing such as prioritizing a fire emergency over opening a door to let warm air 
inside and within a real-time boundary.
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