
Spell-As-You-Type Spell Checking in Java Swing
By: Steven Lawrance, slawrance@yahoo.com

Draft Presentation Outline

1. Purpose
2. Motivation
3. Architectural Overview
4. SpellChecker Interface
5. AspellSpellChecker
6. CachedSpellChecker
7. Remote SpellChecker Over CORBA
8. SpellCheckerContent
9. SpellCheckerThread
10.SpellCheckerManager
11.Swing Extensions
12.Tying it All Together - Demo
13.SourceForge Project Page (not set up yet, but will be well before JavaOne)
14.Future Directions

Purpose

Spell-as-you-type spell checking in Swing enhances an application's usability while ensuring the correct
spelling of user-entered text in implementing applications. By underlining misspelled words as they are typed
in, users get immediate feedback on their misspellings just as they do in popular word processors.

Depending on the nature of the application, as one hypothetical scenario, user-entered text in a database could
get submitted as evidence in a court, and misspelled text from a database could embarrass an organization, even
if to a minor extent. Reviews and audits for compliance or routine monitoring share similar implications.

Although this may be far-fetched, I'm hoping that this framework or a derivative thereof finds itself in the
standard Java class libraries in addition to the native Aspell library, though a pure-Java spell checker will also
work in lieu of Aspell. This can bring standardized spell checking to all Java platforms, not just Mac OS X.

Motivation

Users of a multi-organization shared client registration system that I develop for originally typed their clinical
and psychosocial notes into a Microsoft Word window for its spell checking and then copied the results into the
application's note entry screens. While this may work well in many organizations, we found that checking the
spelling of medical terms with accurate word suggestion lists using Microsoft Word would likely add high
acquisition, deployment, and maintenance costs to the project as we would need to purchase and update
specialized medical dictionaries for all workstations. Centralizing the word lists could solve this problem,
though that meant that, at the time that we looked at it, using Word was out of the question.

Seeking to streamline the process of entering notes while strengthening the spelling of our notes, the
organizations involved prioritized the addition of a spell checker, giving the green light to this project. Seeking
maximum return on minimal investment, I chose to reuse the open-source GNU Aspell Spell Checker, regarded
as the best spell checker out there in terms of its word replacement suggestions. To solve the word list
centralization and deployment issues, I used CORBA to send spell checker method calls to the spell checking
server, where JNI can call native Aspell functions.

After about two years of reliable spell checking within the deployed application and with my graduate school
term set to start in the Fall of this year, I decided to write this paper describing this framework and release it
under an open-source license so that I and others can use and improve it going forward.



Architectural Overview

Seeking a solid abstraction that does not tie the framework to one or one set of spell checkers, I designed the
spell checker framework with multiple interfaces to permit interchangeable implementations.

At the forefront, the SpellChecker interface presents spell checking algorithms and libraries in a standardized
manner for applications and the rest of this framework. The AbstractSpellChecker implements the SpellChecker
interface to ease a full SpellChecker's implementation and is used by the CachedSpellChecker, which delegates
spell check requests to another SpellChecker while caching words that are deemed as correctly spelled to
enhance the performance of future word checks on slow or network-based SpellCheckers.

SpellCheckerContent instances get used by AbstractDocuments to add misspelled word tracking on the content
layer, ensuring that the SpellCheckerContent is aware of all content mutations. This paper discusses the
rationale for operating on the Content layer rather than the Document layer and poses a migration to the
Document layer as a potential future enhancement. Applications set the “content” property on a
JTextComponent when the CustomTextAreaUI and CustomTextFieldUI look-and-feel extensions, explained
later, are used.

The SpellCheckerThread class manages the background checking of SpellCheckerThreadCallback-
implementing objects such as the SpellCheckerContent. SpellCheckerThreadListeners can receive notifications
on when spell checking begins, when it finishes, when spell checking will likely take more than three seconds to
finish, and when the SpellChecker in use throws an exception, giving useful feedback to desktop applications
and applets.

The CustomTextAreaUI and CustomTextFieldUI classes use the FieldViewWithSpellCheckUnderlining,
PlainViewWithSpellCheckUnderlining, and WrappedPlainViewWithSpellCheckUnderlining classes to draw
spell-checked text with misspelled word underlinings by delegating their drawSelectedText() and
drawUnselectedText() methods to the framework's Renderer class, which queries the proper
SpellCheckerContent for misspelled word ranges.

Swing's excellent extensibility made this framework possible and, through this extensibility, this spell checking
framework can likely be plugged into most Swing applications without too much work, especially applications
that already use FieldView, WrappedPlainView, or PlainView for their JTextComponent views. Applications
that use custom Views in their TextUIs might require additional integration work for the spell-as-you-type
underlining.

In summary, this framework's core objects are the SpellChecker interface, the SpellCheckerContent, the
SpellCheckerThread, and the Renderer. Each has its own purpose, and they all tie together through abstraction
to produce spell-as-you-type spell checking with Java Swing.

AbstractSpellChecker

SpellCheckerEventProxy

CachedSpellChecker
FieldViewWithSpellCheckUnderlining

GapContentWithIterator

PlainViewWithSpellCheckUnderlining

Renderer

<<Interface>>

SpellChecker

ContentSegment

SpellCheckerContent

<<Interface>>

SpellCheckerListener

SpellCheckerManager

<<Interface>>
SpellCheckerRepaintListener

SpellCheckerThread

<<Interface>>

SpellCheckerThreadCallback

<<Interface>>

SpellCheckerThreadListener

WrappedPlainViewWithSpellCheckUnderlining

0..*

0..1

<<use>>

<<use>>

<<use>>

0..1

0..*

0..1

0..1

0..*

0..*

0..*



SpellChecker Interface

The SpellChecker interface, depicted on the left,
includes various methods related to spell checking along
with event notification and property methods. An
abstract implementation, the AbstractSpellChecker,
provides empty implementations for these methods
except for several that all spell checkers must
implement: checkSpelling(), getCapabilities(),
getSpellCheckerName(), and getSpellCheckerVersion().
Other methods are optional, though a fully-featured
spell checker will implement most or perhaps all of
them.

Beyond the simple ability to check the spelling of a
word and return a binary-ORed integer of capability
flags, spell checkers may optionally implement word
replacement suggestions, SpellChecker object instance-
specific words, a personal dictionary, generic named
dictionaries, setting custom misspelled word
replacements, list saving, word list retrieval using the
Collections Set interface, SpellChecker-specific
configuration properties, and public finalization.

In terms of how popular word processors operate, word
replacement suggestions are the word lists that appear
when a user right-clicks on a misspelled word or comes
across a misspelled word in a spell checking dialog box.
The getWordSuggestions() method takes a misspelled

word as its argument and returns a String array sorted from the best suggestion to the worst suggestion or, if no
suggestions exist, an empty String array.

SpellChecker object instance-specific words refer to words that persist only as long as a SpellChecker object
instance is alive or until clearInstanceWords() gets called. This is analogous to the “Ignore All” command in a
spell checker user interface that tells the spell checker to ignore all instances of a given misspelled word. Words
get added through addInstanceWord() and removed through either removeInstanceWord() or
clearInstanceWords(). Through the magic of event notifications, an “Ignore All” command on a word in one
text box can automatically remove the misspelled underlinings for that word in all other text boxes that use the
same SpellChecker instance, and that is exactly what the SpellCheckerContent object does, among other things.

Personal dictionaries are a bit self-explanatory as most word processor spell checkers implement them. Rather
than clicking “Ignore All,” a user can add a misspelled word to a personal dictionary to permit that word to
persist across SpellChecker instances. Most word processors call this function “Add Word.” In the
SpellChecker interface, addPersonalWord() adds words to this list. The particular personal word list file or
resource that a SpellChecker instance uses is an implementation-specific property as not all SpellCheckers are
necessarily local or even use a filesystem as a back-end store.

In addition to personal lists, the SpellChecker interface lets applications manipulate named dictionaries such as
master or supplementary word lists. The generic addDictionaryWord(), removeDictionaryWord(),
getDictionaryWords, and clearDictionaryWords() methods grant access to these dictionaries. As these methods
are rather new and aren't used by the client application that I work on, more general dictionary methods will
likely get added such as dictionary enumeration, creation, removal, loading, and unloading methods. Perhaps a
new dictionary descriptor class is in order. This and other possible enhancements are discussed later in this
paper.

Users who commonly misspell certain words may tell their word processor to “Always Replace” a particular

<<Interface>>
SpellChecker

getCapabilities() : int
isCapabilitySupported(capability: int) : boolean
saveAllLists() : void
addSpellCheckerListener() : void
removeSpellCheckerListener() : void
getSpellCheckerListeners() : SpellCheckerListener[]
checkSpelling(word: String) : boolean
getWordSuggestions(misspelledWord: String) : String[]
setWordReplacement(misspelledWord: String,correctSpelling: String) : void
addInstanceWord(word: String) : void
addPersonalWord(word: String) : void
addDictionaryWord(dictionary: String,word: String) : void
removeInstanceWord(word: String) : void
removePersonalWord(word: String) : void
removeDictionaryWord(dictionary: String,word: String) : void
getInstanceWords() : Set
getPersonalWords() : Set
getDictionaryWords(dictionaryName: String) : Set
clearInstanceWords() : void
clearPersonalWords() : void
getPropertyDescriptor(key: String)
setPropertyValue(key: String,value: Object) : void
getPropertyValue(key: String) : Object
getProperties() : Map
setProperties(map: Map) : void
getSpellCheckerName() : String
getSpellCheckerVersion() : String
finalize() : void



misspelled word with the correctly-spelled word. The setWordReplacement() method accomplishes this and lets
the SpellChecker implementation factor that into future calls to getWordSuggestions(). Setting a word
replacement should persists across SpellChecker instances that use the same word replacement lists in a manner
similar to how personal words are handled, though that is not absolutely required.

The saveAllLists() method instructs the SpellChecker to write any unsaved or in-memory changes to objects
such as personal word lists or word replacement lists to the persistent storage. In many cases, this simply
translates into writing the changes to files. This method does not guarantee that it was physically written to the
underlying media, but a successful return does guarantee that the lists were saved such that new SpellChecker
instances that use the same files or resources will contain the same word list data. This method will probably
have an exception type added to its list of exceptions to propagate failure events to the caller.

Applications that wish to retrieve dictionary, personal, or instance word lists may call getDictionaryWords(),
getPersonalWords(), or getInstanceWords(), respectively, in the form of a Java Collections Set. The order of the
Set is defined by the SpellChecker implementation and might not appear in alphabetical order to an Iterator.

SpellChecker implementations may optionally support property enumeration, assignment, and retrieval through
the SpellChecker's property methods. Applications can retrieve property metadata through either the
getPropertyDescriptor() or getProperties() method and thus receive a property's description, read-only versus
read-write status, default value, name, and current value along with a method that can set that property's value.
This amount of information should let an application present a list of SpellChecker configuration properties to a
user. The setPropertyValue() and setProperties() methods can be used to change property values and generate
property change events to registered listeners after each property change takes place. The setProperties()
method accepts any object for Map values and, if a value is an instance of SpellCheckerPropertyDescriptor, the
value within that SpellCheckerPropertyDescriptor is used, allowing an application to call this method using a
Map returned as-is from the same or another SpellChecker instance's getProperties() method call. Not all spell
checkers support on-the-fly property changes for some or all properties, so changing a property may cause a
spell checker reset event to fire, indicating the clearing of all instance words and possibly the loss of any
unsaved word or replacement list modifications.

One may notice that the SpellChecker interface includes a public finalize() method that publicizes Object's
protected finalize() method. While I'm not yet sure if this is the best approach to this or not, some SpellChecker
implementations such as the AspellSpellChecker use native objects over JNI, and having the ability to explicitly
deallocate native Aspell objects in memory can help keep native Aspell memory use in check. I've noticed that
finalize() is not always called reliably on some JRE versions, so having a public finalize() method helps ensure
that an application can explicitly free native objects on SpellChecker objects that utilize JNI. Of course, simply
calling finalize() doesn't garbage-collect the object at all, and finalize() in SpellChecker implementations must
not assume that they will only get called once. I welcome input on how to handle this and whether or not a JNI
class can rely upon finalize() getting called during garbage collection.

Because not all SpellChecker implementations are the same, each one must return a list of supported
SpellChecker capabilities through the getCapabilities() method, which binary-ORs integer constants
representing that SpellChecker's capabilities. Applications should call getCapabilities() or
isCapabilitySupported() when setting up their spell checker user interfaces so that only supported capabilities
are exposed. Capabilities can also dynamically change in a SpellChecker. When that happens, registered
listeners receive a “capabilities changed” event. As an example of how an application adjusts a user interface to
match a SpellChecker's capabilities, SpellCheckers that support personal word lists can enable an “Add Word”
button or right-click menu item while SpellCheckers that don't support personal word lists can gray or hide that
button or right-click menu item.

Applications can easily use implementations of this interface as-is without the spell-as-you-type part of this
framework. Some examples could include search engines that check the spellings of queries and recommend
correctly-spelled queries, dialog-based spell checking on documents, electronic dictionary or encyclopedia
applications, or even simple dedicated spell checking applets. Of course, the main focus of this framework is the
spell-as-you-type checking, so read on to see how this leads up to Swing integration.



AspellSpellChecker

The Aspell SpellChecker implementation provides a Java wrapper to the native C-based Aspell spell checker
over JNI. As Aspell was the originally-implemented SpellChecker object, much of the SpellChecker interface
resembles the general design of the Aspell API, though not all methods in SpellChecker are supported by
Aspell. The AspellSpellChecker object presents itself as a SpellChecker implementation extending the
AbstractSpellChecker while relying upon inner classes for native methods, Sets, Set Iterators, and property
descriptors. To the maximum extent possible, complexity is kept in the Java implementation while the native
JNI code simply acts as a dumb bridge between the Native inner class and Aspell's C API.

Because Aspell's C API includes functions for enumerating lists and
querying metadata dynamically, very little impedance mismatch exists
between Aspell's C API and the SpellChecker interface. As an example,
the word list retrieval methods such as getPersonalWords() and
getInstanceWords() return a Set implementation that defers its methods
calls to the appropriate C-based methods in the Aspell API, including the
Iterator class and methods. No copying to a Java-backed Set happens in
those two methods.

Hopefully, one day, Aspell will have a pure-Java implementation and thus
remove the need for a JNI bridge to use it. Aspell's implementation utilizes
object orientation to a high degree, though, like many porting projects, it
comes down to time and interest, and using the native Aspell library
through JNI works well for now. I successfully built and used the native
JNI code to AspellSpellChecker on Windows, Linux, and Mac OS X, and

chances are very good that it will also work on Solaris. Pointers originally used 32-bit integers, though now the
JNI bridge uses 64-bit pointers between C and Java while casting appropriately for Aspell pointers depending
on whether the native platform's processor and operating system are 32-bit or 64-bit.

Because SpellChecker is an interface rather than an implementation, one certainly does not need to use the
AspellSpellChecker to take advantage of this framework. I mentioned the AspellSpellChecker because it is
currently the fullest working implementation of the SpellChecker interface at this time.

CachedSpellChecker

The CachedSpellChecker maintains a list of correctly-spelled words to accelerate calls to checkSpelling() while
delegating all other methods and checkSpelling() calls on unknown words to a delegate SpellChecker object.
Events generated by the delegate SpellChecker find their way to a CachedSpellChecker's listeners through an
event proxy. When used with network-enabled or otherwise slow-running SpellCheckers, the
CachedSpellChecker offers spell checking services at a reduced network and/or computation cost.

The CachedSpellChecker actually maintains two lists: a list of correctly-spelled words and a list of instance
words. As instance words have a lifetime of only a SpellChecker object's instance, the CachedSpellChecker can
provide instance word services for SpellCheckers that don't support instance words in addition to SpellCheckers
that do support instance words. It actually provides this service regardless of underlying support, though if the
delegate SpellChecker does support instance words, the CachedSpellChecker will initialize its instance word list
at the time that SpellChecker is set as the delegate, adding those words to the overall cache in the process. All
instance words exist in the overall list of correctly-spelled words, and this is maintained through the relevant
method implementations and event handlers (e.g., adding an instance word to the delegate SpellChecker directly
rather than through the CachedSpellChecker will get picked up by the CachedSpellChecker).

In addition to implementing instance words, the CachedSpellChecker can run in a standalone mode without a
delegate SpellChecker, though with limited functionality. Methods exist for reading its main word list cache
from a Reader and writing it out to a Writer using a simple text file format of one word per line (blank lines are
ignored). The CachedSpellChecker also implements Serializable to support saving and loading the main word
list cache through Java's serialization capabilities.

SpellChecker

AspellSpellChecker

Native

JNI Native Code

Aspell



Remote SpellChecker Over CORBA

The client application that I write for presently uses CORBA for its client-to-server communication and
influenced the remoting technology chosen for a network-enabled SpellChecker. CORBA is not central to the
implementation's design; one can substitute RMI or Web Services with a little refactoring. The overall design of
the remote SpellChecker utilizes a simple and effective dispenser and manager implementation on the server
side with a small client-side object that implements SpellChecker.

On the server side, the SpellServer creates a DispenserImpl instance and publishes it on a transient name server.
The DispenserImpl exposes only two methods: one for creating a new ManagerImpl and another for retrieving
the inactivity timeout. The DispenserImpl closes ManagerImpl objects and, consequently, SpellCheckers when
the client explicitly requests a closure or when the client has not performed any activity during the timeout
period. The client regularly calls a keepAlive() method in the DispenserImpl for the lifetime of the
RemoteSpellChecker. Each client RemoteSpellChecker instance interacts with its own corresponding
ManagerImpl on the Spell Checking Server, and each ManagerImpl calls methods on its own SpellChecker
instance. At this time, events from the server-side SpellChecker do not propagate to the RemoteSpellChecker,
so the RemoteSpellChecker fires its own events after calling remote Manager methods.

The client application that I write for uses this spell checking server with the AspellSpellChecker on the server
side and a CachedSpellChecker wrapping the RemoteSpellChecker on the client side to enable efficient and
accurate distributed spell checking with minimal network utilization. Medical words are centrally stored on the
server and managed from the front-end application in an administrative interface. Along with this setup, a
personal word replacement list file exists for each user on the server through Aspell to personalize the
misspelled-word-to-correctly-spelled-word mappings for each user's peculiar word misspellings. Personal word
lists are not utilized on a per-user basis but rather in a application-wide manner to store the medical words, and
only administrative users in the application can modify this list, though technically nothing other than Java and
CORBA development abilities stops users from modifying the application-wide personal word list through
direct usage of the SpellServer's Manager interface from their workstations as the security is in the application's
client layer.

Interesting potential utilizations of the RemoteSpellChecker and SpellServer exist and include, but are certainly
not limited to, adding centralized and stronger spell checking to Microsoft Word, creating a spelling provider
for Mac OS X's spell checking framework, integrating this framework into OpenOffice.org and StarOffice, and
building a text editor applet or Java WebStart application that utilizes centralized spell checking on a server.
The abstraction involved permits implementors to choose which SpellChecker to use, so use of this framework
does not tie people to Aspell.

SpellServer

DispenserImpl

ManagerImpl

SpellChecker

0..*

Spell Checking Server

Manager

RemoteSpellChecker

Dispenser

given to

creates via a Dispenser call and uses

Client-Side Implementation



SpellCheckerContent

The SpellCheckerContent checks an AbstractDocument's spelling in real-time by directly handling the
insertString() and remove() methods in AbstractDocument.Content through its extension of
GapContentWithIterator, which extends GapContent, and posting “unchecked range” events to a
SpellCheckerThread, which will call SpellCheckerContent's checkSpelling() method from another thread using
a LIFO queue of SpellCheckerThreadCallback-implementing objects that have unchecked ranges. Applications
can use SpellCheckerContent's methods to query information on misspelled words in addition to forcing current
word checks, canceling background checks, queuing the entire content for spell checking, setting misspelled
words as correctly spelled throughout the content, performing a blocking check, and ignoring specific
misspelled word instances. The CustomTextUI class, discussed later, registers repaint listeners with
SpellCheckerContent objects so that the UI can efficiently repaint words as their correctly-spelled or misspelled
status changes from one to the other without having to repaint the entire UI object.

To maximize code reuse and minimize
complexity, the SpellCheckerContent object
heavily utilizes the BreakIterator in the java.text
package to determine word boundaries in the
content while presenting the content as a
CharacterIterator for minimum memory
utilization and maximum performance. Needless
to say, this approach took some time and
experimentation to arrive at, but in the end, the
integration of the BreakIterator with

GapContent through the GapContentWithIterator extension works very well and should theoretically work with
determining word boundaries on complex languages such as Japanese. Perhaps a future version of GapContent
can support the creation of CharacterIterators directly, though that's another topic in itself.

This class makes heavy use of the Position objects returned from Content's createPosition() method for
mutation-agnostic content positions within the ContentSegment class, which extends Segment and serves as a
vehicle to inform the CustomTextUI or any interested applications of all misspelled word ranges between two
arbitrary content position offsets via the getMisspelledWordRanges() method. The goal is to not penalize long

ContentSegment

position : Position
isChecking : boolean
deletedChars : int
<<create>> ContentSegment()
<<create>> ContentSegment(array: char[],offset: int,count: int)
<<create>> ContentSegment(array: char[],offset: Position,count: int)
<<create>> ContentSegment(src: Segment)
setValues(array: char[],offset: int,count: int) : ContentSegment
setPositionToOffset() : void
clear() : void
getOffset() : int
clone() : Object
hashCode() : int
compareTo(obj: Object) : int

SpellCheckerContent

serialVersionUID : long
uncheckedRanges : TreeSet
misspelledWords : TreeSet
spellChecker : SpellChecker
wordIterator : BreakIterator
middleSegments : ContentSegment[]
breakHyphenatedWords : boolean
listenerList : EventListenerList
currentWord : ContentSegment
currentRange : ContentSegment
spellCheckerThread : SpellCheckerThread
fromSegment : ContentSegment
toSegment : ContentSegment
toMisspelledSegment : ContentSegment
eventHandler : SpellCheckerEventHandler
<<create>> SpellCheckerContent(spellChecker: SpellChecker,spellCheckerThread: SpellCheckerThread)
<<create>> SpellCheckerContent()
insertString(where: int,str: String) : UndoableEdit
remove(chgOffset: int,chgLength: int) : UndoableEdit
getSpellChecker() : SpellChecker
getSpellCheckerThread() : SpellCheckerThread
setSpellChecker(spellChecker: SpellChecker,spellCheckerThread: SpellCheckerThread) : void
recheckEntireContent() : void
isState3(ch: char) : boolean
checkSpelling() : boolean
hasUncheckedWords() : boolean
forceCheckOnCurrentWord() : void
getMisspelledWordRanges(ranges: Collection,start: int,end: int) : void
cancelSpellChecking() : boolean
setWordAsCorrectlySpelled(word: String) : void
ignoreWordAtPosition(pos: int) : void
getMisspelledWordAtPosition(pos: int) : MisspelledWord
getNextMisspelledWord(pos: int) : MisspelledWord
addPropertyChangeListener(listener: PropertyChangeListener) : void
removePropertyChangeListener(listener: PropertyChangeListener) : void
getPropertyChangeListeners() : PropertyChangeListener[]
firePropertyChangeEvent(propertyName: String,oldValue: Object,newValue: Object) : void
addRepaintListener(listener: SpellCheckerRepaintListener) : void
removeRepaintListener(listener: SpellCheckerRepaintListener) : void
getRepaintListeners() : SpellCheckerRepaintListener[]
fireRepaintEvent(start: int,end: int) : void

<<Interface>>
SpellCheckerRepaintListener

repaintRange(start: int,end: int) : void

GapContentWithIterator

<<Interface>>
SpellCheckerThreadCallback

0..*

0..*



contents when misspelled words are added or removed and to perform with O(1) constant execution time in as
many cases as it can. This stemmed from the original requirement that spell checking must not slow down the
user's entry of text, and the SpellCheckerContent object achieves that goal nicely with minimal content locking
and a design that does not require the update of misspelled word positions whenever the content changes. The
content remains free of any locks while the SpellCheckerContent waits for its SpellChecker to check the
spelling of a word, and if the content directly related to a misspelled word range currently being checked
changes, the SpellCheckerContent will automatically compensate appropriately and reschedule that range's
checking with the SpellCheckerThread. To minimize the spell checking load during active content mutation, a
word that is in the middle of being edited will not get checked immediately unless if, with new mutations, that
word is no longer the current word or if forceCheckOnCurrentWord() gets called, which the
CustomTextFieldUI and CustomTextAreaUI classes call when the text component loses the current focus.

During text insertions and removals, the SpellCheckerContent intelligently manages the misspelled word ranges
affected by the current mutation. Text insertions that amend, immediately precede, or occur within a misspelled
word range will increase the size of that misspelled word range and queue that new text for spell checking. Text
removals delete any misspelled word ranges within the text removal range, shrink the affected word range, if it
exists, at the beginning and end of the removal range, and, if two misspelled word ranges existed at the
beginning and end of the removed range, those two misspelled word ranges are merged together and queued for
checking. Much of the complexity in the SpellCheckerContent exists in these two methods as both implement
thread safety and minimal locking.

At this time, the SpellCheckerContent tightly-couples itself to the SpellCheckerThread, though the
SpellCheckerThread loosely couples itself to the SpellCheckerContent object through the
SpellCheckerThreadCallback interface. A future version of this spell checking framework may loosen the
coupling between the SpellCheckerContent and the SpellCheckerThread to permit alternative implementations
of the SpellCheckerThread. The CustomTextUI class also tightly-couples itself to the SpellCheckerContent
object, so some extra abstraction is possible in this area.

SpellCheckerThread

Running as a separate thread, the SpellCheckerThread drives the background checking of
SpellCheckerThreadCallback-implementing objects, which primarily means the SpellCheckerContent object
described in the previous section. SpellCheckerThreadCallback-implementing objects notify the
SpellCheckerThread that they have unchecked word ranges in response to content mutation events. The last
SpellCheckerThreadCallback that notified the SpellCheckerThread of its unchecked ranges gets checked first
under the assumption that the most-recent notification likely occurred in response to a user-initiated event such
as typing into a text field.

The SpellCheckerThread also manages the countdown on the current word that the user is in the middle of
editing for it to get checked after the timeout, which is three seconds since the last character typed by default. A
SpellCheckerThreadCallback-implementing object in the middle of its checkSpelling() call can optionally
notify the SpellCheckerThread of its progress as it checks its content and, if the SpellCheckerThread determines
that the expected check time will likely take more than three seconds based on the current rate of progress, it
will notify SpellCheckerThreadListeners of this event so that, if an application wishes to, it can display a UI
hint to the user to alert them of this condition.

Sometimes, a SpellChecker or a SpellCheckerThreadCallback may throw an Exception during the
checkSpelling() call to a SpellCheckerThreadCallback. When this happens, the SpellCheckerThread notifies
SpellCheckerThreadListeners of this along with the Exception object thrown so that applications can handle this
event appropriately. Along with this event, SpellCheckerThreadListeners will also receive notifications when
spell checking begins, when it ends, and when it begins and ends for each SpellCheckerThreadCallback object,
giving applications detailed information on the SpellCheckerThread's status. These events run within the
SpellCheckerThread's thread.



SpellCheckerManager

Nothing more than a convenience class, the SpellCheckerManager provides static methods for getting and
setting a ClassLoader-wide SpellChecker and SpellCheckerThread instance so that an application does not need
to maintain its own references when creating new SpellCheckerContent objects for its text fields. Of course,
different SpellCheckerContent objects may use different SpellCheckers and even SpellCheckerThreads, though
many applications will likely share a single instance of SpellCheckerThread throughout its
SpellCheckerContents and, depending on the type of application, a single SpellChecker as well. Document-
oriented applications such as word processors will probably want to use a new SpellChecker instance for each
document.

Swing Extensions

Although getting Swing to underline misspelled words is a bit more complex than it sounds, it is definitely
possible to make it work efficiently and without elaborate hacks. Overall, this task involves drawing misspelled
text with an underline, handling right-clicks on the text field or area for a pop-up menu, maintaining that pop-up
menu, forcing a check on the current word when the focus is lost, handling the “next misspelled word” hotkey
(Control+Semicolon), and responding dynamically to changes in the JTextComponent's content property.

Several approaches exist to achieve the actual visual underlining effect for misspelled words. One could
respond to repaint events by figuring out where the UI drew the text after the fact and draw an underline
underneath it, though such an approach requires exact formatting information from the UI and adds extra
processing to drawing operations. Ideally, the underlining should happen at around the same time the text is
drawn when the exact pixel positions are known inside the relevant drawing functions. Fortunately, Swing
provides such an extension point through the View interface that the ViewFactory create() method returns,
which all ViewFactory-implementing BasicTextUI descendants implement. The CustomTextFieldUI and
CustomTextAreaUI objects override their super implementations' create() methods and return the appropriate
View from the inclusive set of PlainViewWithSpellCheckUnderlining, FieldViewWithSpellCheckUnderlining,
and WrappedPlainViewWithSpellCheckUnderlining. Each of those View implementations diverge from their
super implementations' drawSelectedText() and drawUnselectedText() methods by delegating the text drawing
to this spell checker framework's Renderer class's drawText() method instead of to Utilities.drawTabbedText().
The Render still uses Utilities.drawTabbedText() for correctly-spelled words, though a modified variant of
Utilities.drawTabbedText() gets used for the misspelled text drawing in Renderer.drawMisspelledTabbedText().
That method underlines misspelled words with the Renderer.underlineMisspelledText() method before writing
out the characters of a misspelled word to ensure that the underlining does not potentially obstruct character
descenders. The default underlining color is a soft red (R,G,B is 255, 128, 128), but this can be changed by
setting the misspelledWordUnderlineColor property in a JTextComponent.

As far as I am aware, no standardized right-click menu handling exists in Swing for text components, requiring
an application to handle this task itself if it wishes to have this behavior. Because spell-as-you-type spell
checking really needs a right-click menu for the full user experience, the CustomTextUI implements one that
lists the top seven word suggestions, misspelled word operations such as “Add for Now,” “Add to Personal
List,” “Ignore this Word,” and “Next Misspelled Word,” undo and redo items when an undoManager property
exists, and the standard Cut, Copy, Paste, Delete, and Select All edit items. Menu handling is a big area for
potential improvement in this framework and possibly Swing in general, though it's entirely possible for an
application that uses its own right-click pop-up menu to query the SpellCheckerContent itself and integrate spell
checking into its menu in they way that it pleases to.

Because Apple's Mac OS X operating system defines Command+Semicolon as the hotkey that jumps to and
highlights the next misspelled word, the CustomLookAndFeel uses Control+Semicolon on Windows and Linux.
This can be defined or changed easily through the look and feel, especially if the CustomLookAndFeel is not
used. The CustomTextUI binds the next-misspelled-word handler to the “selectNextMisspelledWord” keyboard
action. The “undo” and “redo” keyboard actions bind to the undo and redo handlers that defer to the registered
UndoManager in the “undoManager” property, which should be bound to Control+Z and Control+Y.

Various places in this paper refer to a content property in a JTextComponent, but no rationale for this property



has been put forth yet. Why not use getDocument(), you might ask? The AbstractDocument uses a Content
object for the actual text storage, which cannot be retrieved publicly from an AbstractDocument, and Content is
what the SpellCheckerContent extends, but why was that approach chosen? Documents are good enough for the
UI, so why doesn't the spell checking framework use them? The SpellCheckerContent needs to know about text
removal events before and after the removal takes place so that it can adjust any Position objects within or
adjacent to the removed text range before they become unpredictably invalidated by the text removal process. I
experimented with this more than two years ago with 1.3.1_02, so perhaps this aspect is worth revisiting to see
if this is still necessary in 1.4.2 and above so that DocumentEvents can be used instead of direct Content
extension and thus work with a wider range of Documents. The ability to directly query the content with a
CharacterIterator interface through GapContentWithIterator seemed cool at the time, though Document's
Segment-based getText() method is actually just as efficient and is what the performance-demanding UI text
drawing objects use anyway. A future enhancement may involve pushing the spell checking back up to the
Document layer with a DocumentListener or, potentially, a delegating Document if it still must know about text
removals before they happen. But for now, an application will need to set the “content” property on a
JTextComponent to an instance of SpellCheckerContent to make the CustomTextUI underline misspelled
words.

Tying it All Together - Demo

Using the Notepad demonstration program that ships with the Sun Java SDK, I added a small amount of extra
code to enable spell-as-you-type spell checking to create a demonstration for this spell checking framework.

When this customized version of Notepad starts up, the initial document contains a dump of the SpellChecker's
configuration from a loop that iterates through the results returned from getProperties(), as show in the image
below. Each line was written in the form of [property name] ([description]): [defaultValue]; [value].



The default values work well in most cases, though applications are definitely free to adjust them as necessary,
just as the application that I write for does to make the personal word list application-wide instead of per-user.
Note that different SpellChecker implementations will likely support different properties. The above screen shot
lists the properties in an AspellSpellChecker instance using GNU Aspell 0.60.2.

Using the Java_programming_language Wikipedia article as a test, the spell checker was able to spot misspelled
words immediately after pasting the entire article into Notepad. Remember that “accommodate” is one of the

few words that can accommodate
two Cs and two Ms.

Using this same screen shot, notice
how “deletable” is misspelled
several times in the same manner.
The next two screen shots
demonstrate the “Add for Now”
function that adds an instance
word. When the
SpellCheckerContent receives the
instance-word-added event from
the SpellChecker, it reacts to it by
looking through its list of
misspelled word ContentSegments
and removing matching words that
are now considered correctly
spelled, notifying all registered
SpellCheckerRepaintListeners of
the now correctly-spelled ranges in
the process.

Many other demonstration
scenarios exist, though it's far
easier to demonstrate in person
than on paper, especially aspects
that rely on timing. At this time,
the spell-as-you-type functionality
behaves much in the same way as
it does in popular word processors,
though no standardized spell
checking dialog box exists at this
time, which might get added as a
future enhancement.



SourceForge Project Page

The project page was not available at the time of this paper's initial publication. Please check
http://www.moonlightdesign.org/steve/ for the project page.

Future Directions

Going forward, various aspects of this spell checker framework will likely get improved for better abstractions
and increased Document and UI compatibilities. Among some of the improvements are more dictionary-related
methods in the SpellChecker interface, server-side SpellCheckerEvents that propagate back to
RemoveSpellCheckers, looser couplings between the SpellCheckerContent and the SpellCheckerThread and
CustomTextUI classes, a standardized spell checking dialog box, a DelegatedSpellChecker class that splits the
SpellChecker delegating functionality out of the CachedSpellChecker, and moving the SpellCheckerContent up
to the Document level and renaming it to “SpellCheckerDocument.” Aside from these modifications to the spell
checker framework, some enhancements to Swing itself can help the framework and possibly other applications.
The additions suggested in this document include potential right-click menu standardizations on text fields and
other Swing UI objects and a CharacterIterator-returning method on Document and/or Content objects for
seamlessly tying into the java.text package. Swing is already highly-extensible and thus does not require any
changes to work with spell-as-you-type spell checking, though these changes can potentially make it integrate
better.

This project will likely become publicly available on sourceforge.net or an alternative host shortly after this
paper's submission and, over the next several months, many of the spell checker framework improvements
mentioned will likely get implemented.


